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Abstract

Background—Because of the warming climate urban temperature patterns have been receiving 

increased attention. Temperature within urban areas can vary depending on land cover, 

meteorological and other factors. High resolution satellite data can be used to understand this 

intra-urban variability, although they have been primarily studied to characterize urban heat 

islands at a larger spatial scale.

Objective—This study examined whether satellite-derived impervious surface and 

meteorological conditions from multiple sites can improve characterization of spatial variability of 

temperature within an urban area.

Methods—Temperature was measured at 17 outdoor sites throughout the Detroit metropolitan 

area during the summer of 2008. Kriging and linear regression were applied to daily temperatures 

and secondary information, including impervious surface and distance-to-water. Performance of 

models in predicting measured temperatures was evaluated by cross-validation. Variograms 

derived from several scenarios were compared to determine whether high-resolution impervious 

surface information could capture fine-scale spatial structure of temperature in the study area.

Results—Temperatures measured at the sites were significantly different from each other, and all 

kriging techniques generally performed better than the two linear regression models. Impervious 

surface values and distance-to-water generally improved predictions slightly. Restricting models 

to days with lake breezes and with less cloud cover also somewhat improved the predictions. In 

addition, incorporating high-resolution impervious surface information into cokriging or universal 

kriging enhanced the ability to characterize fine-scale spatial structure of temperature.
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Conclusions—Meteorological and satellite-derived data can better characterize spatial 

variability in temperature across a metropolitan region. The data sources and methods we used can 

be applied in epidemiological studies and public health interventions to protect vulnerable 

populations from extreme heat events.
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1. Introduction

Improved characterization of urban microclimates is critical for better understanding the 

urban heat hazard caused by urban heat islands as well as a warming climate. Previous 

studies of urban climate have been conducted to explore spatial differences in urban and 

urban/rural temperatures using either the networks of weather stations or temperature 

sensors designed specifically for field studies. Temperatures measured in regulatory weather 

stations have high quality and long time periods, but field studies with temperature sensors 

have the advantage of flexible sampling locations capturing location-specific characteristics. 

For example, by comparing temperatures measured in both urban and rural sites in 

Baltimore and Phoenix, Brazel et al. (2000) reported that the urban–rural minimum 

temperature gradients had increased and they were positively associated with population 

change. Harlan et al. (2006) found that neighborhoods in Phoenix with high building 

density, less vegetation and open space experienced increased temperatures. Oka (2011) 

suggested that human heat comfort levels in Philadelphia were a function of urban street 

characteristics, surface materials and time of a day. Finally, Houet and Pigeon (2011) used 

an automated method to classify and map Urban Climate Zones and compare the 

temperature data measured in the field to satellite-derived surface temperature in these 

zones.

Several interpolation methods have been examined to predict the spatial variation of 

temperature using temperature data from networks of thermometers sited at airports and 

other locations across a geographic area, often an urban settlement or metropolitan region. 

The idea behind these methods is that temperature measured at particular points can provide 

information about the temperatures at points where direct measurements are not available. 

Methods used to interpolate among these measured points to create a smooth spatial surface 

of temperature, or to estimate temperatures at nearby locations, include kriging, inverse 

distance weighting methods, regression methods (Vicente-Serrano et al., 2003), an 

interpolation optimization method (Loubier, 2007), smoothing splines (Luo et al., 1998), and 

spatial-temporal modeling (Im et al., 2009). Secondary information related to temperature 

has also been incorporated into these techniques to improve estimation, including such 

variables as distance to water bodies (Im et al., 2009), topographic and geographic variables 

such as elevation, longitude and latitude (Vicente-Serrano et al., 2003), solar radiation 

(Ninyerola et al., 2000), quantitative climate/meteorological model predictions (Degaetano 

and Belcher, 2006) and satellite-derived information such as land surface temperature (Vogt 

et al., 1997).
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Satellite images have the advantage of providing continuous geographic coverage of 

environmental variables, often providing fine scale (e.g., 30 by 30 m resolution) data over 

large geographic areas. Remote sensing data have been successfully applied in public and 

environmental health studies in past decades, and can play a critical role in improving our 

understanding of the relationships between environmental factors and human health, 

including mitigating risks caused by heat waves (Wilhelmi et al., 2004; NRC, 2007). Rapid 

development of remote sensing technologies has improved availability of high-resolution 

land-cover information (USGS, 2011). Land surface temperature is an indicator of the 

thermal inertia of surface characteristics, and is derived from remotely sensed thermal 

infrared data by a series of calibrations and conversions accounting for atmospheric mixing 

(Johnson et al., 2009; Kestens et al., 2011). Impervious surfaces, which are paved or covered 

with built structures through which water cannot penetrate, contribute to heat accumulation 

in built-up areas (U.S. EPA, 2008). Imperviousness, usually measured as percent impervious 

surface covered in a given area, is a useful satellite-derived indicator of land cover. Both 

land surface temperature and imperviousness have been explored within the context of urban 

climate or extreme heat exposures. For example, Johnson et al. (2009) and Kestens et al. 

(2011) demonstrated the significance of land surface temperature in predicting heat-related 

mortality and exposures. Thermometer measurements are typically made at low spatial 

density compared to the fine-scale impervious surface data that can be obtained from 

satellite land-cover images that cover a complete region. However, to the best of our 

knowledge, previous studies have not examined whether satellite-derived surface 

information on imperviousness can improve the estimation of temperature or capture the 

fine-scale spatial structure of temperature in a large area.

This paper examines how impervious surface and meteorological conditions (cloud cover 

and lake breezes) can be incorporated in geostatistical methods to improve temperature 

predictions, and characterize fine-scale spatial structure of temperatures in the Detroit 

metropolitan area. This paper is part of an ongoing research project designed to evaluate 

heat wave preparedness and sustainability issues in Detroit. In a companion paper, Oswald 

et al. (submitted for publication) examined the urban heat island of Detroit from a 

meteorological perspective.

2. Methods

2.1. Data collection

This study was conducted in the Detroit metropolitan area in August 2008. The population 

of Detroit is 81% African–American, and 26% of its residents live below the poverty level 

(Schulz and Northridge, 2004). Previous studies in Detroit have shown that individuals with 

diabetes, with less education and blacks O’Neill et al., 2005 experience disproportionate 

temperature and mortality impacts (O’Neill et al., 2003, 2005; Schwartz et al., 2004). A 

recent study of 107 U.S. communities (Anderson and Bell, 2009) shows that Detroit was 

above the 80th percentile of cities in the increase in mortality risk with daily mean 

temperature, suggesting that Detroit is strongly affected by heat compared to other cities.

HOBO data loggers (HOBO Pro V2 External Temperature/Relative humidity Data Logger 

U23-002; HOBO is a registered trademark of Onset Computer Corp., Bourne, MA, USA) 
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were deployed at 17 sites in the yards of resident volunteers to characterize the variability of 

temperature throughout the Detroit metropolitan area, Michigan, USA (Fig. 1). Sites were 

chosen to represent a wide range of impervious surface conditions, measured using local 

mean percent impervious surface in the vicinity of the residences of participants. A HOBO 

monitor includes temperature and humidity sensors within naturally aspirated radiation 

shields and a data logger. These sensors were mounted to thin wooden stakes, and then were 

placed around 2 m above ground level. HOBO monitors were sited in yards over grass, and 

away from driveways to minimize microclimate impacts. Our HOBO sitting protocol aimed 

to ensure that the measurements of these monitors captured variations in neighborhood land-

cover conditions, rather than in surface conditions immediately under or near the sensors.

Measurements from all 17 HOBOs were available from August 9 to August 30, 2008. 

Measurements of temperature and relative humidity were collected on these days at 5-

minute intervals and used to conduct the analysis. Three temperature metrics were used: 

temperatures measured at 5:00 a.m. (Eastern Daylight Time (EDT)) and 5:00 p.m. (EDT), 

and daily mean temperatures. The 5:00 a.m. and 5:00 p.m. temperature observations were 

reasonable approximations of daily minimum and maximum values, respectively. Four 

missing values were replaced using linear interpolation based on values recorded at the same 

station immediately before and after the missing values. Secondary information including 

impervious surfaces and distances to the nearest water body were also used in the data 

analysis. The Detroit metropolitan area is surrounded by three large water bodies: Lake St. 

Clair, Lake Erie and the Detroit River. Distance-to-water was calculated as the shortest 

straight line distance between a HOBO site and the Detroit River, Lake Erie or Lake St. 

Clair (no smaller inland lakes were considered) using ArcGIS 9.1 (ESRI, Redlands, CA).

Imperviousness data (30×30 m) were downloaded from the National Land Cover Database 

(NLCD) 2006 impervious surface (USGS, 2011). To reduce the computational burden in 

cokriging, the original 30 m pixel values were averaged at an 800×800 m grid resolution 

across the study area using ArcGIS 9.1.

Clear days and days with a lake breeze event during daytime were determined based on 

weather observations downloaded from the National Climatic Data Center (NCDC, 2008). 

Using cloud cover and rain information from Detroit Metropolitan Wayne County Airport, 

clear days were defined as days when cloud cover was non-existent or scattered for more 

than 60% of the daylight hours, and no precipitation occurred. A lake-breeze event was 

defined as a day in which Detroit was especially inclined to be affected by the nearby water 

bodies due to wind shifts. Days with lake breeze were selected using a protocol developed 

on the basis of weather information at Detroit Metropolitan Wayne County Airport, Detroit 

City Airport, Troy-Oakland Airport, Willow Run Airport, Grosse Ile Municipal Airport, a 

buoy on Lake St. Clair, another buoy on Lake Erie, and the Lafayette station operated by the 

Michigan Department of Environmental Quality—the latter data was obtained from the 

Michigan Department of Environmental Quality. The protocol involved considering land-

water temperature differences, cloud cover, wind speed and wind direction. Details are 

provided in Appendix A.
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2.2. Data analysis

The associations between temperature measurements and their attributes (space, time, 

imperviousness and distance-to-water) were assessed using the Kruskal–Wallis test, Pearson 

correlations- coefficients and linear regressions. Temperature measurements were 

summarized by daily mean, minimum and maximum temperatures, and the length of time 

that a given site registered temperatures above a threshold temperature. Longer duration of 

high temperatures may be more hazardous from a human-health perspective because it is 

difficult for people to recover from prolonged heat exposure. Curriero et al. (2002) have 

reported a daily mean temperature of 18.3 °C as a minimum temperature-mortality threshold 

for Chicago. We adopted this threshold in our analysis because Detroit and Chicago have a 

similar climate. We calculated the length of time (hours) above this threshold for each site 

per day, and then averaged that time length for each site.

2.3. Geostatistical models

Kriging is a geostatistical interpolation technique accounting for spatial correlation and it is 

used to predict or interpolate attribute values at unsampled locations given the information at 

sampled locations (Bailey and Gatrell, 1996). Spatial variation can be divided into two 

components: first-order variation (a trend component) and second-order effects (spatial 

dependence). First-order variation can be modeled using regression, which models observed 

values as a function of geocoordinates and secondary characteristics that are co-located with 

temperature measurements, and second-order effects can be estimated using the variogram, a 

function characterizing spatial correlation. Ordinary kriging only accounts for primary 

information, and assumes the variable of primary interest has a constant mean value. 

Universal kriging is a natural extension of ordinary kriging that includes location and other 

covariates in a regression model to estimate a trend for a primary variable (in our case, air 

temperature). Universal kriging relaxes the constant mean assumption used in ordinary 

kriging. Cokriging takes secondary information into account using a cross-variogram 

between primary and secondary variables. Cokriging usually works well when co-variables 

are strongly correlated and the secondary variable is more densely sampled compared with 

the primary variable.

Several kriging methods were used to interpolate the temperature measurements in this 

study. These methods include ordinary kriging, universal kriging with impervious surface 

and/or distance-to-water, and cokriging with impervious surface and/or distance-to-water. 

Each kriging technique was performed with and without removing the spatial trend of 

temperature measurements. A quadratic trend of the temperatures measured at HOBO 

locations was specified using x- and y-coordinates corresponding to longitude and latitude in 

the analysis. The performance of these kriging methods in predicting the actual temperatures 

measured at the HOBO sites was compared to the performance of a linear regression model 

where temperature was modeled as a function of impervious surface values or distance-to-

water using the criteria described in the next section. Interpolation was applied to the 5:00 

a.m., 5:00 p.m., and the daily mean temperature values each day. Exponential models were 

used in the variogram fitting for all kriging methods used in this study. The Gstat R package 

(Pebesma, 2004) and the R 2.7.2 software (R Development Core Team, 2006) were used in 

variogram estimations, interpolations, and subsequent evaluations.

Zhang et al. Page 5

Environ Res. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2.4. Model evaluation

The performance of each interpolation procedure described above was evaluated and 

compared for each predicted temperature variable using cross validation. In this method, a 

measured temperature observation is temporarily removed from the dataset to which the 

model is fit, and this value is estimated from the remaining data using the same kriging 

method. This procedure is then repeated for all 17 temperature observations. The true and 

estimated values are then compared. We used the root mean square error (RMSE) statistic as 

the comparison criteria for this study, defined as:

(1)

where zi is the temperature measurement at location i, ẑi is estimated temperature value at 

location i, and n is number of the HOBO sites. Additionally, RMSE was used to examine 

whether interpolation could be improved by restricting the models to clear or cloudy days, 

and days with or without lake breezes. Moreover, we examined the associations between the 

RMSE and the correlations between temperature, impervious surface, and distance-to-water 

to facilitate the comparison.

2.5. Reconstructing spatial structure of temperature

Variograms describing the 800 × 800 m estimates across the Detroit metropolitan area 

derived from kriging were compared to those calculated from temperatures measured at the 

17 HOBO sites. Variograms enable us to determine the spatial dependence of temperature in 

the study area. We chose the three hottest days (August 18th, 22nd, and 23rd, 2010) during 

the study period for this exercise. Kriging predictions were estimated from ordinary kriging, 

universal kriging with impervious surface, and cokriging with impervious surface values. If 

variograms derived from the predictions using impervious surface had smaller estimated 

correlation ranges (i.e., if the patterns were less smooth) than those from the temperature 

measures alone, this would suggest that impervious surface value could be helpful in 

reconstructing finer-scale spatial-structure of temperature.

3. Results

3.1. Descriptive statistics

Descriptive statistics for the HOBO temperature measurements at the 17 sites are shown in 

Table 1. The maximum temperature values at 17 sites during 22 days had the largest range 

(32.9–36.1 °C), followed by minimum (8.3–12.3 °C) and mean temperature observations 

(20.5–21.9 °C). For the entire period, the Kruskal–Wallis test showed that the temperature 

time series at the 17 sites were significantly different from each other (p<0.001), indicating 

that the patterns of temporal variation in temperature varied across the metropolitan area.

In general, the largest spatial variation in temperatures between stations occurred in the daily 

5:00 p.m. temperatures, followed by the 5:00 a.m. and daily mean temperature records (Fig. 

2). This finding was also indicated by the averages of daily interquartile range (IQR) and 

range of these three metrics: for daily 5:00 p.m., average IQR and range were 1.7 and 4.0 
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°C, respectively; for daily 5:00 a.m., average IQR and range were 1.3 and 3.4 °C, 

respectively; and for daily mean temperature, they were 0.6 and 1.7 °C, respectively. The 

spatial variability of these three indicators also varied by day of study. For example, for the 

three hottest days (August 18th, 22nd and 23rd) in this period, the 5:00 a.m. measurements 

had the largest variability, followed by the daily mean and the 5:00 p.m. records. However, 

for the coldest day (August 10th), the 5:00 am observations still had the largest variation, 

followed by the 5:00 p.m. and daily mean values.

The average of daily mean temperature during the study period had the strongest association 

with the percent impervious surface in the 800 m cell within which each of the 17 HOBO 

sites fell, followed by the average of daily minimum values and the average of daily 

maximum values (Supplemental Figure 1). Regression diagnostics on temperatures against 

percent impervious surface showed that two assumptions of linear regression models 

(residuals having normal distribution and constant variance) were reasonably met. Pearson’s 

correlation coefficient (r) for percent impervious surface and average of daily mean 

temperatures was 0.75 (95% confidence interval (CI):0.42, 0.90). The linear effect 

coefficient for the percent impervious surface was 0.02 (95% CI: 0.01, 0.03), which 

represented a 0.02 °C temperature increase with each percent increase in imperviousness. 

Correlations between impervious surface and the average of daily minimum temperatures 

were somewhat lower, with a coefficient of 0.59 (95% CI: 0.15, 0.83). But the linear effect 

coefficient (0.04; 95% CI: 0.01, 0.07) for impervious surface against average daily 

minimum temperature was higher than the corresponding coefficient for mean temperature. 

However, the average of daily maximum temperature was not statistically correlated with 

percent imperiousness (r= −0.10, 95% CI: −0.56, 0.40; linear effect coefficient= −0.01, 95% 

CI: −0.05, 0.03). Additionally, impervious surfaces did not have a significant effect (0.01; 

95% CI: −0.02, 0.03) on the duration of high temperatures, as indicated in Supplemental 

Figure 1D.

Distance-to-water had the strongest associations with the average daily minimum, followed 

by the averages of daily maximum and mean, temperatures during the study period 

(Supplemental Figure 2). Diagnostic plots on the regressions showed that two assumptions 

of linear regression models (normal distribution and constant variance) were satisfied. 

Correlation coefficients between the distance-to-water and the temperature measures (daily 

minimum, maximum, mean temperatures, and the length of time over the threshold) were 

−0.86 (95% CI: −0.95, −0.64), 0.61 (95% CI: 0.19, 0.85), −0.48 (95% CI: −0.78, 0.01), and 

−0.25 (95% CI: −0.65, 0.27), respectively. Linear effect coefficients, which represent the 

magnitude of temperature/length change with an one kilometer increase in distance, were 

−0.08 (95% CI: −0.10, −0.06), 0.06 (95% CI: 0.02, 0.10), −0.02 (95% CI:−0.04, 0.00) and 

−0.01 °C km−1 (95% CI: −0.05, 0.02), respectively.

3.2. Evaluation of kriging methods

Kriging methods generally had slightly better performance (indicated by smaller RMSEs) 

than the linear regression method with imperviousness for daily 5 a.m./p.m. temperature 

metrics, and than the linear regression with distance-to-water for daily average temperature. 

Kriging methods performed similarly to these two linear regression models under other 
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cases for three temperature metrics (Fig. 3A–C). All kriging methods had a similar 

performance, except for cokriging with imperviousness and distance-to-water, and kriging 

methods with detrending performed similarly to those without detrending. Adding secondary 

information in addition to detrending did not improve performance greatly. The best 

performance of all methods was seen for models of daily mean temperature, followed by 

daily 5 a.m. and 5 p.m. temperature.

The performance of all methods varied not only with temperature metric and method type, 

but under clear and cloudy conditions also (Fig. 4A–C). For the daily 5 p.m. temperature 

(Fig. 4C), kriging during clear days had slightly better performance compared to cloudy 

days. However, different trends were seen in the daily 5 a.m. (Fig. 4A) and mean 

temperatures (Fig. 4B). For daily 5 a.m. temperature, kriging using only clear days had 

worse performance compared to analysis using the cloudy days. For the daily mean 

temperature, kriging predictions were similar among different kriging methods and did not 

differ much when models were stratified by clear or cloudy days.

For the daily 5 p.m. temperature, all kriging methods except for cokriging with impervious 

surface values and distance-to-water improved performance slightly on days with a lake 

breeze (Fig. 4F). However, the linear regression model with imperviousness showed worse 

performance on days with a lake breeze, and distance-to-water performed similarly under 

the two conditions. Moreover, for the daily 5 a.m. and daily mean temperatures (Fig. 4D–E), 

all kriging methods did not have a consistent pattern.

3.3. Temperature spatial structure reconstruction

The variograms derived from the temperature measurements and kriging predictions 

illustrate that cokriging-derived variograms had the shortest ranges, followed by universal 

kriging-derived variograms, ordinary kriging-derived variograms, and original variograms 

based on temperature at 17 sites (Table 2).

4. Discussion

The urban climate literature has generally not addressed whether satellite-derived 

imperviousness information can improve the predictions of temperature at unsampled 

locations and capture the fine-scale spatial structure of temperature in a large area. In the 

Detroit Metropolitan region, we had an opportunity to investigate whether land use 

(imperviousness) and meteorological conditions (cloud cover and lake breezes) can improve 

the temperature predictions. We summarize our key findings in the next paragraph and next 

talk in detail about some of them.

Temperatures measured at the 17 sites were statistically significantly different from each 

other, consistent with a Phoenix, Arizona study, which measured temperature in eight city 

neighborhoods during the summer of 2003 (Harlan et al., 2006). Kriging models had 

generally slightly better prediction performance than linear regression models, and 

impervious surface values and distance-to-water generally improved predictions slightly. 

The influences of nearby imperviousness and water bodies on temperature depended on 

temperature metrics, and the largest impacts of both occurred for daily minimum 
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temperature compared to other metrics. Also, in general, for daily 5 p.m. temperature, 

kriging models performed slightly better under days with lake breezes and with less cloud 

cover. Finally, we found that incorporating high-resolution impervious surface information 

into cokriging or universal kriging was helpful for characterizing fine-scale spatial structure 

of temperature.

The associations between the temperature metrics and imperviousness or distance-to-water 

could be explained by their physical mechanisms. The positive effect coefficients of 

temperature-imperviousness are indicative of greater absorption and irradiance by 

impervious surfaces compared to vegetated surfaces, leading to higher mean and minimum 

temperature values. The associations for imperviousness imply that, for the lows and means, 

nearby imperviousness is a key factor in defining the local environment because of the heat 

capacity of the impervious surface; for the highs, factors other than imperviousness 

influence the temperature. The associations for distance-to-water may be mainly explained 

by water-body effects. Water is warmer than land at night, and is cooler than land in the 

daytime. Thus, HOBO stations closer to a lake or other water body would be expected to 

have a higher minimum temperature and lower maximum temperature.

Kriging performance varied with temperature metrics. Kriging methods performed slightly 

better or similarly to linear regression models because, although kriging methods account for 

local temperature measurements in the estimation, the number (n=17) of HOBO sites is 

limited. Smaller RMSE associated with daily mean temperature compared to the other two 

metrics might be explained by the smaller spatial variation in daily mean temperature 

compared to the other two temperature parameters.

Different patterns of performance on temperature metrics under clear/cloudy conditions 

could be attributed to two factors. First, clearness was defined during daytime, and is a 

surrogate of sunniness and is thus intuitively less likely to affect the daily 5 a.m. 

temperature, which occurs before dawn. Second, the stratification by clear/cloudy days did 

not improve kriging performance for daily mean temperature mainly because clear days can 

result in higher temperatures in the day due to heating by the sun’s rays, and lower 

temperatures at night if skies remain clear, since clouds are not trapping the daytime heat. 

The result of averaging these temperatures over a 24-hour period would be expected to be 

approximately the same as for cloudier days where the daily minimum and maximums 

would be expected to be less extreme at both ends of the range.

The patterns of kriging performance on days with and without a lake breeze could be 

explained by the fact that lake breeze was defined according to daytime weather 

information. The changing patterns under lake-breeze stratification for daily 5 p.m. 

temperature were probably due to stronger spatial correlation on lake-breeze days, kriging 

accounting for spatial correlation, as well as linear regression models not taking spatial 

correlation into account. Also, correlations with impervious surfaces might be expected to 

be lower on breezy days, because the associated advection would reduce temperature 

differences due to local surface characteristics.
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Strong correlations between the temperature metrics and imperviousness or distance-to-

water did not enhance the performance (indicated by smaller RMSEs) of either cokriging or 

universal kriging models for most cases (Supplemental Figures 3–5). Goovaerts (2000) 

suggested that cokriging estimates are affected by the correlation between primary and 

secondary information as well as their spatial continuity patterns. These findings suggested 

that cokriging performance in this case study was mainly determined by the latter.

In general, the performance of all the kriging methods decreased with increased variance in 

temperature (Supplemental Figures 6–8). These findings are consistent with Collins and 

Bolstad (1996), and might be attributable to the increased difficulty of making estimates 

when the values on which those estimates are based are more variable.

Shorter correlation ranges (Table 2) in temperature estimates indicated more textured spatial 

patterns, suggesting that cokriging or universal kriging were better able to recreate some of 

the fine-scale spatial structure of temperature by including satellite-derived impervious 

surface values than were estimates based only on our limited direct measurements of 

temperature.

Remotely sensed data have the disadvantage of temporal coverage constrained by the 

observing time of satellites, although they have the primary advantage of providing large 

spatial coverage and resolution of surface temperature and land-cover characteristics. In this 

study, we used the latest NLCD 2006 impervious surface data, but they did not exactly 

match the timing of the HOBO study conducted in 2008. We compared the percent 

impervious surface at the 17 HOBO sites derived from the NLCD 2006 and the NLCD 2001 

version 2 imperviousness datasets (USGS, 2011). There were no differences except for at 

two sites (changes were +1% and +6%, respectively). We also conducted a sensitivity 

analysis using the NLCD 2001 version 1 impervious surface data, which were calculated 

using different algorithms compared to the recently available the NLCD 2006 and the 

NLCD 2001 version 2 datasets (USGS, 2011). The differences of monitors’ imperviousness 

between the 2006 and 2001 version 1 ranged from −15% and +26% with a median value of 

−4%. We found that the quantitative results changed slightly, but our major conclusions 

were not affected. Thus, these findings suggested that imperviousness around the monitors 

generally changed slowly and did not significantly affect our major conclusions.

Besides the mismatch between the timings of the imperviousness and temperature 

measurements, the study had a few other limitations. First, our secondary variables included 

only imperviousness and distance-to-water. The imperviousness was estimated using 

remotely sensed data, and the distance-to-water was approximated as the shortest straight-

line distance between a HOBO site and its nearest water body. The analysis did not account 

for land-use types, vegetation, urban morphology and buildings around HOBO monitors. 

Second, the relative small number of monitors reduced the power of the data analysis. Third, 

the study period was relatively short, and did not cover extremely hot days.

5. Conclusions

A set of HOBO temperature sensors was used to characterize spatial variability of 

summertime temperature in the Detroit metropolitan area, Michigan, USA. Several kriging 
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methods (ordinary kriging, cokriging and universal kriging) were compared, and results 

suggested that secondary information such as percent impervious surface, lake breezes and 

cloud cover generally improved model performance slightly when using a limited set of 

temperature measurements. Additionally, our investigation showed that impervious surface 

values could allow us to reconstruct fine-scale spatial structure of temperature. Considering 

the high resolution of satellite-derived impervious information, these findings have 

implications for detecting higher temperature areas, which can be combined with socio-

demographic information to identify ‘hot spots’ of vulnerability. These findings also 

suggested the potential of imperviousness as a temperature surrogate for heat-related 

epidemiological studies, but further studies are needed to evaluate its performance within the 

context of epidemiology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
HOBO sites in the Detroit metropolitan area, Michigan, USA (HOBO sites in triangles with 

impervious surface image as the background).
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Fig. 2. 
Spatial and temporal variability of the temperature observations (Each box plot shows the 

spatial variability across the 17 stations on a given day). (A) Daily 5:00 a.m. temperature; 

(B) daily mean temperature and (C) daily 5:00 p.m. temperature.
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Fig. 3. 
Model comparison between different kriging and linear regression methods (RMSE, root 

mean square error; LMI and LML, temperature was modeled as a function of impervious 

surface values or distance-to-water; OK, ordinary kriging; OKD, ordinary kriging with 

detrending; CKI, cokriging with impervious surface values; CKID, cokriging with 

impervious surface values and detending; CKL, cokriging with distance-to-water; CKLD, 

cokriging with distance-to-water and detending; CKIL, cokriging with impervious surface 

values and distance-to-water; CKILD, cokriging with impervious surface values, distance-

to-water and detending; UKI, universal-kriging with impervious surface values; UKID, 

universal-kriging with impervious surface values and detrending; UKL, universal-kriging 

with distance-to-water; UKLD, universal-kriging with distance-to-water and detrending). 

(A) Daily 5:00 a.m. temperature; (B) daily mean temperature and (C) daily 5:00 p.m. 

temperature.
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Fig. 4. 
Model comparison between different kriging and linear regression methods under clear/

cloudy days or with/without a lake breeze. (A–C, days were stratified as clear days (1 on the 

X axis) and cloudy days (0 on the X axis); D–F, one and zero representing days with and 

without lake breeze; Otherwise as Fig. 3). (A) Daily 5:00 a.m. temperature under clear and 

cloudy days; (B) daily mean temperature under clear and cloudy days; (C) daily 5:00 p.m. 

temperature under clear and cloudy days; (D) daily 5:00 a.m. temperature with/without a 

lake breeze; (E) daily mean temperature with/without a lake breeze; (F) daily 5:00 p.m. 

temperature with/without a lake breeze.
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